.. _pdfs-explanation: =========================== Pair distribution functions =========================== The pair distribution function describes the spatial correlation between particles. Two-dimensional (planar) pair distribution function =================================================== Here, we present the two-dimensional pair distribution function :math:`g_{\text{2d}}(r)`, which restricts the distribution to particles which lie on the same surface :math:`S_\xi`. Let :math:`g_1` be the group of particles which are centered, and :math:`g_2` be the group of particles whose density around a :math:`g_1` particle is calculated. Furthermore, we define a parametric surface :math:`S_\xi` as a function of :math:`\xi`, .. math:: S_\xi = \{ \mathbf{r}_{\xi} (u, v) | u_{\text{min}} < u < u_{\text{max}}, v_{\text{min}} < v < v_{\text{max}} \} which consists of all points :math:`\mathbf{r}_\xi`. By varying :math:`u, v` we can reach all points on one surface :math:`\xi`. Let us additionally consider a circle on that plane :math:`S_{i, r}` with radius :math:`r` around atom :math:`i` given by .. math:: S_{i, r} = \{ \mathbf{r}_{i, r} | \; || ( \mathbf{r}_{i, r} - \mathbf{x_i} || = r ) \land ( \mathbf{r}_{i, r} \in S_{\xi, i} ) \} where :math:`S_{\xi, i}` is the plane in which atom :math:`i` lies. Then the two-dimensional pair distribution function is .. math:: g_{\text{2d}}(r) = \left \langle \sum_{i}^{N_{g_1}} \frac{1}{L(r, \xi_i)} \frac{\sum_{j}^{N_{g_2}} \delta(r - r_{ij}) \delta(\xi_{ij})} {\vert \vert \frac{\partial \mathbf{f}_i}{\partial r} \times \frac{\partial \mathbf{f}_i}{\partial \xi} \vert \vert _{\phi = \phi_j}} \right \rangle where :math:`L(r, \xi_i)` is the contour length of the circle :math:`S_{i, r}`. :math:`\mathbf{f}_i(r, \gamma, \phi)` is a parametrization of the circle :math:`S_{i, r}`. Discretized for computational purposes we consider a volume :math:`\Delta V_{\xi_i}(r)`, which is bounded by the surfaces :math:`S_{\xi_i - \Delta \xi}`, :math:`S_{\xi_i + \Delta \xi}` and :math:`S_{r - \frac{\Delta r}{2}}, S_{r + \frac{\Delta r}{2}}`. Then our two-dimensional pair distribution function is .. math:: g_{\text{2d}}(r) = \left \langle \frac{1}{N_{g_1}} \sum_i^{N_{g_1}} \frac{\text{count} \; ({g_2}) \; \text{in} \;\Delta V_{\xi_i}(r)} {\Delta V_{\xi_i}(r)} \right \rangle .. _pdfplanar-derivation: Derivation ---------- Let us introduce cylindrical coordinates :math:`r, z, \phi` with the origin at the position of atom :math:`i`. .. math:: \begin{aligned} x &= r \cdot \cos \phi \\ y &= r \cdot \sin \phi \\ z &= z \\ \end{aligned} Then the two-dimensional pair distribution is given by .. math:: g_{\text{2d}}(r, z=0) = \left \langle \sum_{i}^{N_{g_1}} \frac{1}{2 \pi r} \sum_{j}^{N_{g2}} \delta(r - r_{ij}) \delta(z_{ij}) \right \rangle where we have followed the general derivations given above. For discretized calculation we count the number of atoms per ring as illustrated below .. image:: ../../static/pdfplanar_sketch.svg :alt: Sketch of the discretization :class: only-light .. image:: ../../static/pdfplanar_sketch_dark.svg :alt: Sketch of the discretization :class: only-dark The sketch shows an atom :math:`i` from group :math:`g_1` at the origin in blue. Around the atom a ring volume with average distance :math:`r` from atom :math:`i` is shaded in light red. Atoms :math:`j` from group :math:`g_2` are counted in this volume. One-dimensional (cylindrical) pair distribution functions ========================================================= Here, we present the one-dimensional pair distribution functions :math:`g_{\text{1d}}(\phi)` and :math:`g_{\text{1d}}(z)`, which restricts the distribution to particles which lie on the same cylinder along the angular and axial directions respectively. Let :math:`g2` be the group of particles whose density around a :math:`g1` particle is to be calculated and let :math:`g1, g2` lie in a cylinderical coordinate system :math:`(R, z, \phi)`. Then the angular pair distribution function is .. math:: g_{\text{1d}}(\phi) = \left \langle \sum_{i}^{N_{g_1}} \sum_{j}^{N_{g2}} \delta(\phi - \phi_{ij}) \delta(R_{ij}) \delta(z_{ij}) \right \rangle And the axial pair distribution function is .. math:: g_{\text{1d}}(z) = \left \langle \sum_{i}^{N_{g_1}} \sum_{j}^{N_{g2}} \delta(z - z_{ij}) \delta(R_{ij}) \delta(\phi_{ij}) \right \rangle Discretized for computational purposes we consider a volume :math:`\Delta V_{z_i,R_i}(\phi)`, which is bounded by the surfaces :math:`S_{z_i - \Delta z}`, :math:`S_{z_i + \Delta z}`, :math:`S_{R_i - \Delta R}`, :math:`S_{R_i + \Delta R}` and :math:`S_{\phi - \frac{\Delta \phi}{2}}, S_{\phi + \frac{\Delta \phi}{2}}`. Then our the angular pair distribution function is .. math:: g_{\text{1d}}(\phi) = \left \langle \frac{1}{N_{g_1}} \sum_i^{N_{g_1}} \frac{\text{count} \; ({g_2}) \; \text{in} \;\Delta V_{z_i,R_i}(\phi)} {\Delta V_{z_i,R_i}(\phi)} \right \rangle Similarly, .. math:: g_{\text{1d}}(z) = \left \langle \frac{1}{N_{g_1}} \sum_i^{N_{g_1}} \frac{\text{count} \; ({g_2}) \; \text{in} \;\Delta V_{\phi_i,R_i}(z)} {\Delta V_{\phi_i,R_i}(z)} \right \rangle